용접 기술은 크게 발전하여 다양한 제조 요구 사항에 맞는 다양한 기술을 제공합니다. 그 중에서도 레이저 용접과 MIG 용접은 독보적인 성능을 자랑합니다. 이 기사에서는 각 방법의 핵심 원칙, 고유한 장점 및 적용 방법을 살펴봅니다.
목재 표면에서 페인트를 제거할 때 샌딩, 화학적 제거 또는 히트건과 같은 전통적인 방법이 오랫동안 사용되어 왔습니다.건너뛰기(확정)- 그러나 이러한 기술은 노동 집약적이고 지저분하며 심지어 목재에 해로울 수도 있습니다. 레이저 목재 페인트 제거제를 사용하는 것은 정확하고 효율적이며 환경 친화적입니다.
심한 녹 축적은 광범위한 재료, 특히 금속에 영향을 미치는 일반적인 문제입니다. 녹은 항목의 무결성과 외관을 빠르게 저하시킬 수 있습니다. 올바른 녹 제거 방법을 선택하는 것은 재료의 품질을 보존하고 수명을 보장하는 데 중요합니다. 레이저 녹 제거
레이저 클리닝은 다양한 산업용 청소 및 표면 준비 작업을 위한 최첨단 솔루션으로 부상했습니다. 정확성과 효율성으로 잘 알려진 이 기술은 산업 전반에 걸쳐 점점 더 많이 채택되고 있습니다. 그러나 기업이 고려해야 할 주요 고려 사항 중 하나는 레이저 클리닝 비용을 이해하는 것입니다.
용접은 많은 산업 분야에서 필수적인 공정이지만 상당한 위험이 따릅니다. 용접 위험을 이해하는 것은 공정에 참여하는 모든 사람에게 중요합니다. 이러한 위험은 인간의 건강, 환경, 용접 재료에 영향을 미칠 수 있습니다. 이 문서에서는 관련된 위험을 살펴보겠습니다.
진화하는 용접 기술의 세계에서 휴대용 휴대용 용접기가 게임 체인저로 등장했습니다. 휴대용 레이저 용접기는 휴대성, 효율성 및 정밀도가 완벽하게 조화를 이루는 뛰어난 제품입니다. 이 기사에서는 이러한 휴대용 휴대용 용접기가 왜 필수적인지 살펴보겠습니다.
아연 도금 강철 용접은 아연 코팅으로 인해 독특한 어려움을 안겨줍니다. 이 코팅은 녹과 부식을 방지하는 데 필수적입니다. 이 코팅은 내구성이 뛰어나지만 용접이 복잡해집니다. 용접 아연 도금 강철의 미묘한 차이를 이해하는 것은 강하고 안정적인 용접을 달성하는 데 중요합니다.
레이저 절단은 정밀도, 효율성 및 다양성을 제공하여 현대 제조에 혁명을 일으켰습니다. 자동차 산업, 창작 예술, 산업 제조 분야에 종사하는 경우 레이저 커터 기본 사항을 이해하는 것이 필수적입니다. 이 가이드는 레이저 절단에 대한 포괄적인 소개를 제공합니다.
레이저 절단 기술은 정밀도와 효율성으로 많은 산업에 혁명을 일으켰습니다. 이 기술은 생산성을 높이고 복잡한 설계를 가능하게 합니다. 우리는 레이저 절단 응용 산업의 응용을 탐구하고 그것이 전통적인 프로세스를 어떻게 변화시켰는지 보여줄 것입니다.1. 광고
파이버 레이저 절단 테이블은 정확하고 효율적인 재료 절단을 위한 핵심 구성 요소입니다. 이러한 절단 테이블은 절단 프로세스의 결과와 효율성에도 큰 영향을 미칩니다. 이 기사에서는 파이버 레이저 절단 테이블의 다양한 분류를 심층적으로 살펴봅니다.
레이저 절단 기술은 금속 가공 분야에 혁명을 일으켜 전례 없는 정밀도와 효율성을 제공합니다. 이 혁신적인 기술은 다음과 같은 일반적인 질문을 제기합니다. 레이저로 금속을 절단할 수 있습니까? 실제로 그럴 수 있습니다. 이 기사에서는 레이저가 어떻게 정밀 절단을 가능하게 하는지 심층적으로 살펴봅니다. 7매트
레이저 절단은 현대 제조에 대한 혁신적인 접근 방식을 나타냅니다. 티타늄은 강도가 높고 무게가 가볍기로 유명합니다. 이는 최첨단 기술에 대한 독특한 도전과 기회를 제시합니다. 이 기사에서는 티타늄 레이저 절단의 정밀도와 효율성에 대해 자세히 설명합니다.
금속 레이저 절단기는 재료 가공 세계에서 중요한 발전을 나타냅니다. 정밀도와 효율성은 기존 절단 방법과 비교할 수 없습니다. 이 기술은 다양한 금속의 복잡한 형상을 높은 정밀도로 절단할 수 있습니다. 이 기사에서는 i를 사용하겠습니다.
레이저 용접 기술은 정밀도와 효율성으로 인해 산업 전반에 걸쳐 인기를 얻고 있습니다. 현재 많은 기업들이 이 첨단 기술에 대한 투자를 고려하고 있습니다. 높은 초기 비용으로 인해 일부 기업은 여전히 이 기술에 대한 투자를 망설이고 있습니다. 그들은 알고 싶어합니다
휴대용 레이저 용접은 다용성과 정밀도로 인해 다양한 산업 분야에서 인기 있는 선택이 되었습니다. 그러나 많은 사용자는 이러한 유형의 장비를 작동하는 것이 얼마나 어려운지 걱정합니다. 이러한 우려는 타당하지만 최신 휴대용 레이저 용접 장비는 사용자에게 매우 적합하도록 설계되었습니다.
레이저 기술은 많은 산업에 혁명을 일으켰습니다. 가장 효과적인 용도 중 하나는 금속 표면의 녹과 페인트를 제거하는 것입니다. 녹 및 페인트 제거 레이저로 알려진 이 방법은 기존 청소 방법에 대한 정확하고 효율적이며 환경 친화적인 대안입니다. 이 예술
레이저 용접은 제조, 자동차, 항공우주 등 다양한 산업 분야에서 널리 사용되는 기술입니다. 이는 기존의 많은 용접 방법과는 비교할 수 없는 정밀도와 효율성을 제공합니다. 그러나 최고의 용접 품질을 달성하는 것은 레이저 용접 설정과 올바른 용접 품질 조정에 크게 좌우됩니다.
알루미늄는 널리 사용되는 재료입니다. 가볍고 강도가 높으며 내식성이 뛰어나다는 평가를 받고 있습니다. 그러나 공기에 노출되면 알루미늄은 표면에 산화물 층을 형성합니다. 이 산화물 층은 용접, 페인팅 또는 코팅과 같은 공정을 방해할 수 있습니다. 따라서 효과적인 방법이 중요합니다.
레이저 절단 기술은 정확성과 효율성으로 잘 알려진 현대 제조의 중요한 부분입니다. 자동차, 항공우주, 전자, 예술 등 다양한 산업 분야에서 널리 사용됩니다. 레이저 커터의 작동 방식을 이해하는 것은 이 작업에 참여하거나 고려하는 모든 사람에게 필수적입니다.
레이저 용접 시스템은 고품질, 고정밀 용접을 생산하는 데 중요한 역할을 합니다. 이 기사에서는 레이저 용접 시스템의 구성 요소와 그 진화, 장점, 적용 및 구매에 대해 소개합니다.1. 레이저 용접기 개요 레이저 용접기란?레이저
레이저 기술의 지속적인 개발로 레이저 용접 기술은 끊임없이 전통 기술로 업데이트되고 업데이트되고 있습니다.레이저 용접기점차적으로 더 나은 이점을합니다. 레이저 용접 프로세스에서 일부 프로세스 매개 변수의 변화하는 법률의 건너뛰기(확정) OD 파악이있는 경우 다른 요구 사항에 따라 매개 변수를 조정 한 다음 프로세스 매개 변수를 제어하여 더 나은 용접 품질을 얻을 수 있습니다. 프로세스 매개 변수는 레이저 용접의 품질에 큰 영향을 미친다는 것을 알 수 있습니다. 아래의 윤곽 레이저를 분석합시다. 특정 프로세스 매개 변수가 용접 품질에 영향을 미치는가?
1) 레이저 용접에는 레이저 에너지 밀도 임계 값이 있습니다. 이 값 이하, 침투 깊이는 매우 얕습니다. 이 값에 도달되거나 초과되면 침투 깊이가 크게 증가 할 것입니다.
2) 공작물의 레이저 전력 밀도가 임계 값 (재료와 관련)을 초과하는 경우에만 플라즈마가 생성되어 안정된 깊은 침투 용접의 진행을 표시합니다.
3) 레이저 전력 이이 임계 값보다 낮 으면, 공작물의 표면 만 녹화되며, 즉 용접은 안정한 열 전도성 유형으로 수행됩니다. 레이저 전력 밀도가 작은 구멍의 형성에 대한 임계 조건이 있으면 깊은 침투 용접 및 전도 용접 론적 제출이 불안정한 용접 공정이되어 침투가 크게 변동됩니다.
4) 레이저 깊은 침투 용접 중에 레이저 전력은 동시에 침투 깊이와 용접 속도를 제어합니다. 용접 침투는 빔 전력 밀도와 직접 관련이 있으며 입사 빔 전력 및 빔 초점 스폿의 기능입니다.
5) 일반적으로 특정 직경의 레이저 빔에 대해 빔 전력이 증가함에 따라 침투 깊이가 증가합니다.
빔 스폿 크기는 전력 밀도를 결정하기 때문에 레이저 용접에서 가장 중요한 변수 중 하나입니다.
빔 포커스의 회절 제한점 크기는 광 회절 이론에 따라 계산 될 수 있지만, 초점 렌즈의 수차로 인해 실제 스폿은 계산 된 값보다 크다. 가장 간단한 실제 측정 방법은 두꺼운 종이를 던지고 폴리 프로필렌 플레이트를 관통 한 후 초점 스폿 및 천공 직경을 측정하는 등온 프로파일 방법입니다. 이 방법은 레이저 전력의 크기와 빔 동작 시간을 마스터하기 위해 측정을 통해 실시되어야합니다.
물질에 의한 레이저 광의 흡수는 흡수율, 반사율, 열전도율, 용융 온도, 증발 온도 등과 같은 재료의 중요한 특성에 의존합니다. 가장 중요한 것은 흡수성입니다.
레이저 빔의 재료의 흡수율에 영향을주는 요인은 두 가지 측면을 포함합니다.
1) 첫 번째는 재료의 저항률입니다. 재료의 광택 된 표면의 흡수율을 측정 한 후, 재료의 흡수율이 저항의 제곱근에 비례하고 저항률은 온도에 따라 변화하는 것으로 밝혀졌습니다.
2) 둘째, 재료의 표면 상태 (또는 마감)는 빔 흡수율에보다 중요한 영향을 미치며, 이는 용접 효과에 유의 한 영향을 미치는 것입니다.
용접 속도는 침투 깊이에 큰 영향을 미칩니다. 속도가 증가하면 침투가 얕게 만듭니다. 그러나 속도가 너무 낮 으면 재료의 과도한 용융 및 작업 물의 용접 침투가 발생합니다. 따라서, 특정 레이저 전력 및 특정 재료의 특정 두께의 적절한 용접 속도 범위가 있고, 대응하는 속도 값에서 최대 침투 깊이가 얻어 질 수있다.
1) 레이저 용접 공정에서 불활성 가스는 종종 용융 풀을 보호하기 위해 사용됩니다. 일부 재료가 용접되면 표면 산화가 무시 될 수 있습니다. 그러나 대부분의 응용 프로그램에서 헬륨, Ar {[80] n, 질소 및 기타 가스는 종종 보호에 사용됩니다. 공작물은 용접 공정 중에 산화로부터 보호됩니다.
2) 보호 가스를 사용하는 두 번째 기능은 금속 증기 오염 및 액체 방울 스퍼터링으로부터 초점 렌즈를 보호하는 것입니다. 특히 고출력 레이저 용접에서는 토출이 매우 강력 해지 기 때문에이 시간에 렌즈를 보호 할 필요가 있습니다.
3) 차폐 가스의 제 3 기능은 고전력 레이저 용접에 의해 생성 된 플라즈마 차폐를 방출하는 것이다. 금속 증기는 레이저 빔을 흡수하고 플라즈마 구름으로 이온화되며, 금속 증기를 둘러싸는 차폐 가스는 또한 가열에 의해 이온화된다. 너무 많은 혈장이있는 경우, 레이저 빔은 플라즈마에 의해 어느 정도 소비됩니다. 플라즈마는 작업 표면의 두 번째 종류의 에너지로서 존재하며, 침투 깊이가 얕게되고 용접 풀 표면이 더 넓어집니다. 이온 및 중성 원자로 전자의 3 바디 충돌을 증가시켜 혈장에서 전자 밀도를 감소시킴으로써 전자 재조합 속도를 증가시킨다. 중성 원자가 밝아지고 충돌 주파수가 높을수록 재조합 속도가 높아집니다. 한편, 이온화 에너지가 높은 차폐 가스만이 가스 자체의 이온화로 인한 전자 밀도가 증가하지 않을 것이다.
용접 할 때는 일반적으로 레이저를 수렴하는 데 일반적으로 초점을 맞추고 63 ~ 254mm (2.5 \"~ 10 \")의 초점 거리가있는 렌즈가 일반적으로 사용됩니다. 초점 거리 크기는 초점 거리에 비례하며 초점 거리가 짧아지고 그 자리가 작습니다. 그러나 초점 길이는 초점 깊이가 초점 거리와 동기식으로 증가하는 초점 깊이에도 영향을줍니다. 따라서 짧은 초점 거리가 전력 밀도를 높일 수 있지만 초점 깊이가 작기 때문에 렌즈와 공작물은 유지되어야합니다 제출 Y가 유지되어야하며, 침투 깊이가 크지 않습니다. 용접 공정 중에 스패 터 및 레이저 모드의 영향으로 인해 실제 용접에 사용되는 가장 짧은 초점 깊이는 대부분 126mm (5 \")입니다.
솔기가 크거나 스폿 크기를 증가시켜 용접 이음새가 증가 할 필요가있는 경우 초점 거리 254mm (10 \")로 렌즈를 선택할 수 있습니다.이 경우 깊은 침투 핀홀 효과를 달성하기 위해, 높은 레이저 출력 전력 (전력 밀도)이 필요합니다.
용접시 충분한 전력 밀도를 유지하기 위해 초점 위치가 매우 중요합니다. 포커스의 상대 위치와 공작물 표면의 변화는 용접의 폭과 깊이에 직접적으로 영향을줍니다.
대부분의 레이저 용접 애플리케이션에서는 공작물 표면 아래의 요구 침투 깊이의 대략 {[96] y 1/4에서 초점이 일반적으로 설정됩니다.
다른 재료에서 레이저 용접을 수행 할 때, 레이저 빔의 위치는 용접의 최종 품질, 특히 맞대기 조인트의 경우 랩 조인트의 경우보다 민감합니다. 예를 들어, 경화 된 강철 기어가 저탄소 강철 드럼에 용접 될 때, 레이저 빔 위치의 올바른 제어는 더 나은 균열 저항을 갖는 저탄소 성분으로 주로 용접을 생성하는 데 도움이됩니다.
일부 응용 분야에서는 용접 된 공작물의 기하학적 구조가 레이저 빔을 각도로 편향해야합니다. 빔 축과 조인트 평면 사이의 편향 각이 100도 이내가되면, 공작물의 레이저 에너지의 흡수는 영향을받지 않습니다.
레이저 깊은 침투 용접에서 용접 깊이가 있더라도 핀홀 현상이 항상 존재합니다. 용접 공정이 종료되고 전원 스위치가 꺼지면 용접이 끝나면 구덩이가 나타납니다. 또한, 레이저 용접층이 원래 용접을 덮는 경우, 레이저 빔의 과도한 흡수가 발생하여 용접 장치가 과열되거나 공극을 생산하게합니다.
위의 현상의 발생을 방지하기 위해 전력 시작 및 끝점을 프로그래밍하여 전력 시작 및 종료 시간을 조정할 수 있으므로 시작 전력이 짧은 기간에 설정 전력 값까지 0에서 설정된 전력 값까지 시간이며 용접이 조정됩니다. 시간 및 마지막으로 용접이 종료되면 전원이 설정된 전력에서 0으로 점차적으로 줄어 듭니다.
상기 9 프로세스 파라미터의 상호 작용으로 인해, 레이저 용접의 품질에 미치는 영향을 형성했다. 그를 사용할 때레이저 용접기또한 완벽한 용접 품질과 효과를 얻기 위해 합리적으로 프로세스 매개 변수를 설정해야합니다. 더 전문적인 질문을 위해 Lapion Laser에 문의하십시오.